A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

نویسندگان

  • Wenting Li
  • Guanghui Tan
  • Jianjun Cheng
  • Lishuang Zhao
  • Zhiqiang Wang
  • Yingxue Jin
چکیده

Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر فتودینامیکی کمپلکس تتراپیریدینو پورفیرازین روی (II)، بر رده‌ی سلولی HeLa

Background and Objective: Photodynamic therapy is a treatment that uses photosensitizer and intense visible light. When photosensitizers get exposed to a specific light wavelength (preferentially in the red region), they produce reactive oxygen species that are toxic to cells. Recently, attention has been focused on porphyrins and their analogs as photosensitizers. Zn (II) tetrapyridinoporphyra...

متن کامل

Investigation of photodynamic effect caused by MPPa-PDT on breast cancer

Breast cancer is the common malignant tumor, the incidence increases with age. Photodynamic therapy (PDT) is a new technique applied in tumors, which involves the administration of a tumor localizing photosensitizer and it is followed by the activation of a specific wavelength. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. We are explorin...

متن کامل

Induction of cell death by pyropheophorbide‐α methyl ester‐mediated photodynamic therapy in lung cancer A549 cells

Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reac...

متن کامل

Photodynamic Therapy: A New Approach to Remove Embryos of the Wistar Rat

Background Photodynamic therapy (PDT) is a promising new cancer treatment strategy which inactivates tumor cells by simultaneoulsy using light and a photosensitizer. The similarity between tumors and newly implanted embryos is notable. Extrauterine pregnancy (EUP) does not have a definite treatment and previous therapeutic options (medical and surgical) have not been effective or suitable. Ther...

متن کامل

Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites

The combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2016